拜占庭容错
拜占庭错误是莱斯利·兰伯特在《拜占庭将军问题》中提出的一个错误模型,描述了一个完全不可信的场景,除了存在故障行为,还存在恶意行为。顾名思义,拜占庭容错(Byzantine Fault Tolerance,BFT),就是指能容忍拜占庭错误了。
而非拜占庭容错,又叫故障容错(Crash Fault Tolerance,CFT),解决的是分布式系统中存在故障,但不存在恶意节点的共识问题,比如进程奔溃,服务器硬件故障等等。
一般而言,在可信环境(比如企业内网)中,系统具有故障容错能力就可以了,常见的算法有二阶段提交协议(2PC)、TCC(Try-Confirm-Cancel)、Paxos 算法、ZAB 协议、Raft 算法、Gossip 协议、Quorum NWR 算法。
而在不可信的环境(比如有人做恶)中,这时系统需要具备拜占庭容错能力,常见的拜占庭容错算法有 POW 算法、PBFT 算法。
一致性
一般来讲,我们将一致性分为三类。
- 强一致性:保证写操作完成后,任何后续访问都能读到更新后的值。
- 弱一致性:写操作完成后,系统不能保证后续的访问都能读到更新后的值。
- 最终一致性:保证如果对某个对象没有新的写操作了,最终所有后续访问都能读到相同的最近更新的值。
强一致性是具有多种含义的。
- 在埃里克·布鲁尔的猜想中,CAP 中的强一致性(也就是 C)是指 ACID 的 C,系统状态的一致性,而这种一致性,可以通过二阶段提交协议来实现。
- 在 CAP 定理中,CAP 中的强一致性(也就是 C)是指原子一致性(也就是线性一致性)。其中,Paxos、Raft 能实现线性一致性,而 ZooKeeper 基于读性能的考虑,它通过 ZAB 协议提供的是最终一致性。
一般而言,在需要系统状态的一致性时,你可以考虑采用二阶段提交协议、TCC。在需要数据访问是的强一致性时,你可考虑 Raft 算法。在可用性优先的系统,你可以采用 Gossip 协议来实现最终一致性,并实现 Quorum NWR 来提供强一致性。
可用性
可用性说的是任何来自客户端的请求,不管访问哪个非故障节点,都能得到响应数据,但不保证是同一份最新数据,可用性强调的是服务可用。
一般来讲,采用 Gossip 协议实现最终一致性系统,它的可用性是最高的,因为哪怕只有一个节点,集群还能在运行并提供服务。其次是 Paxos 算法、ZAB 协议、Raft 算法、Quorum NWR 算法、PBFT 算法、POW 算法,它们能容忍一定数节点故障。
最后是二阶段提交协议、TCC,只有当所有节点都在运行时,才能工作,可用性最低。
性能
一般来讲,采用 Gossip 协议的 AP 型分布式系统,具备水平扩展能力,读写性能是最高的。其次是 Paxos 算法、ZAB 协议、Raft 算法,因为它们都是领导者模型,写性能受限于领导者,读性能取决于一致性实现。最后是二阶段提交协议和 TCC,因为在实现事务时,需要预留和锁定资源,性能相对低。